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ABSTRACT

Screening genome-wide sets of mutants for fitness
defects provides a simple but powerful approach for
exploring gene function, mapping genetic networks
and probing mechanisms of drug action. For yeast
and other microorganisms with global mutant col-
lections, genetic or chemical-genetic interactions
can be effectively quantified by growing an
ordered array of strains on agar plates as individual
colonies, and then scoring the colony size changes
in response to a genetic or environmental perturb-
ation. To do so, requires efficient tools for the ex-
traction and analysis of quantitative data. Here, we
describe SGAtools (http://sgatools.ccbr.utoronto.
ca), a web-based analysis system for designer
genetic screens. SGAtools outlines a series of
guided steps that allow the user to quantify colony
sizes from images of agar plates, correct for sys-
tematic biases in the observations and calculate a
fitness score relative to a control experiment. The
data can also be visualized online to explore the
colony sizes on individual plates, view the distribu-
tion of resulting scores, highlight genes with the
strongest signal and perform Gene Ontology enrich-
ment analysis.

INTRODUCTION

Screening for genetic or chemical-genetic interactions,
which occur when a genetic or chemical perturbation
leads to an extreme phenotype, provides a simple but
powerful approach for revealing gene function and

discovering the mode of action of bioactive molecules
(1,2). In yeast, genome-scale reagents, such as the set of
�5000 viable deletion mutants (3), collections of condi-
tional temperature-sensitive mutants (4,5) and gene
overexpression libraries (6,7), represent powerful re-
sources for these screens. High-throughput methods for
manipulating such arrays in yeast and other microorgan-
isms have enabled automation of genetics in these model
systems and often use colony size as a proxy for cell
growth to infer a genetic interaction (1,8,9). The raw
data can be a detailed movie, from which a growth
curve is derived (10–12), but the most basic format is as
a static plate image, which, somewhat surprisingly, is
incredibly rich in functional information. However,
individual colonies on plates are subject to positional
effects, and thus, plate images require further processing
and statistical analyses to extract meaningful biological
insights (13).
Projects aimed at large-scale screening for genetic inter-

actions have identified several sources of experimental
error, which led to the development of analysis methods
that are tailored to the resulting large data sets. For
example, we have successfully applied Synthetic Genetic
Array (SGA) (14) analysis to ascertain the effects of �5
million double gene deletions in yeast (1). A number of the
best practices emerging from analysis of these data cannot
be implemented directly for smaller screens, as they rely
on a large assembly of controls and estimating biases from
hundreds of different experiments to correct for systematic
experimental errors. Moreover, other available methods
are shared as code only (15–17), which may rely on ob-
taining expensive software licenses, a somewhat steep
learning curve to compile and use the published code, or
do not include all the analysis steps in a single web-based
interface, making them less accessible. Consequently,
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laboratories that are interested in performing and
analyzing a relatively small number of customized
screens, such as those designed for detailed analysis of
specific pathways, are lacking user-friendly data analysis
solutions. Here, we present SGAtools, a simple complete
solution for analyzing static image-based screens of
ordered arrays of microbial cultures. SGAtools is an
easy-to-use website that implements state-of-the-art nor-
malization and quantification methods and includes some
basic tools useful for visualizing the data.

SGATOOLS WEB SERVER

SGAtools is a publicly available web server for common
analysis tasks associated with low- to medium-throughput
genetic screens. It comprises three independent tools that
are combined into one pipeline (Figure 1a). First, raw
digital images from the screen are processed to produce
colony size measurements in a simple tab-delimited
format. Second, the colony sizes are normalized to
account for common biases that affect growth (13) and
optionally scored to produce a measure of genetic inter-
action strength. Finally, the data and scores can be
visualized interactively and tested for GO term enrichment
(18). Results of the analyses can be downloaded after any
of the steps.

IMAGE ANALYSIS

The primary, and perhaps the most challenging, task
associated with genetic screen analysis is quantifying
colony sizes based on images taken of solid agar plates
(10,11,19). We incorporated a modified version of the
HT colony grid analyzer (20) in SGAtools. In brief, we
rotate the plate image to make the rows of colonies hori-
zontal, fit a grid based on the pixel intensities in the color
channel with the highest contrast to find the colonies and
count the foreground pixels at every grid node to produce
colony size measures.
The user input to SGAtools image analysis is a set of

plate image files of sufficiently high quality (160 dpi). In
addition, the plate format used must be supplied to fit the
right grid. Currently, pinned rectangular plates of 96
colonies (8 rows � 12 columns), 384 colonies (16� 24),
768 colonies (two interleaved 384 colony configurations)
and 1536 colonies (32� 48) are supported. More advanced
options allow choosing the image-cropping method to dis-
tinguish the plate edges from the agar area. We have
found that the default choice of automated cropping
works well for the vast majority of images, but the alter-
natives can help for special cases. A few failure modes for
correctly segmenting the colonies remain and are docu-
mented on the website.
The selected images are uploaded and can then be

analyzed. This process takes 6–10 s per image, depending
on image size and resolution. After processing the images,
the user has the option of downloading the output files
and visually validating the image analysis results. One tab-
delimited output file is created for each plate image, and
every row of such a file gives the column, row, size and

circularity of one colony. Selected plates can then be
advanced to the normalization and scoring step.

SGAtools has pre-loaded yeast genetic array definitions
commonly used to date, including the haploid viable
deletion array (3), a gene overexpression array (6) and
an array of strains harboring temperature-sensitive
alleles of essential genes (4). A specific file name assigned
to each plate image is used to link the images to a given
array, and a screen plate to its corresponding control. The
filename should have five underscore-delimited fields that
correspond to (i) any prefix, (ii) plate type (‘ctrl’ or ‘wt’ for
control plate, ‘dm’ for double mutant or other non-
control), (iii) query strain name, (iv) plate number in the
array, and (v) any suffix. For example, file ‘2013-05-
12_ctrl_YML032C_2_rep3.jpg’ will be interpreted as the
control for crossing the YML032C query strain into
second plate of the array. The array itself can be specified
at the next step.

NORMALIZATION AND SCORING

Colony size measurements derived from screens using
ordered mutant arrays are susceptible to systematic vari-
ation caused by several experimental factors. These factors
include subtle differences in growth conditions, such as
duration of incubation, from one array plate to the next,
as well as factors that influence local nutrient availability
and affect growth of different subsets of colonies on the
same plate. These include location of the colony on the
plate, gradients in growth medium volume caused by
uneven preparation surfaces and neighboring mutant-
strain fitness. Thus, to accurately quantify colony fitness,
all of these factors, as well as specific batch effects, must
be corrected. The normalization step implements the pre-
viously established methods (13) that are applicable for
small-scale screens for this purpose. Below, we summarize
them for completeness and highlight the differences to
standard SGA screening analyses.

SGAtools corrects for three major sources of bias
(Figure 1b). First, all plates are normalized to have the
same median colony size. This assumes that most colonies
have wild-type fitness (i.e. effects of the applied perturb-
ation are rare) and removes any inconsistencies between
plates that can be due to variable image size, timing of
imaging, plate thickness and so forth. Second, colonies in
each row and column are rescaled to have directly com-
parable size, as described in (13). This normalization is
especially important for colonies toward the edge of the
plate, which have more access to nutrients compared with
the central ones, enabling them to grow to a larger size.
Finally, the spatial correction accounts for correlations in
colony sizes in a region of the plate. This effect is due to
variable plate thickness and can be corrected by spatial
smoothing of the colony sizes [see (13)]. Competition
effect, another source of bias that can be accurately ac-
counted for in large-scale screens (13), is implemented as a
filter only (see later in the text).

In addition to correcting for broad plate effects, SGAt
ools implements filters to flag specific colonies that have
unexpected sizes. The jackknife filter removes colonies
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that are different from its technical replicates. The linkage
filter removes colonies where construction of the double
deletion mutant requires a meiotic crossover between two
linked genes, with the distance threshold determined by
the user in kilobases. As a crossover between genetically
linked genes is a relatively rare event, the associated
colonies will be small because fewer double mutants are
generated (21,22), and thus their sizes may not accurately
reflect the double mutant fitness. Very large colonies are
also removed, as they can indicate a contamination
problem, or perhaps a result from genetically altered
diploids that somehow escape the SGA selection system
for growth of only haploid double mutant meiotic
progeny. Finally, colonies that show a positive genetic
interaction score (i.e. those that are larger than
expected), but are located next to colonies with a
negative interaction (i.e. those that are smaller than
expected), are flagged as potential false positive inter-
actions, as they have access to more nutrients owing to
the small size of their neighbors (also known as the com-
petition effect).

After normalization, the user can opt to score the
screens against controls by quantifying the deviation
from the expected fitness. Negative scores are generated
when the double mutant displays a fitness defect that is
more extreme than expected for the combined effect of the
two single mutations, with the most extreme example
being synthetic lethality. Positive interaction scores are
generated when the double mutant displays a healthier
phenotype than expected for the combined effect of the
two single mutations, such as genetic suppression (13,23).
This is done using the standard multiplicative score
(Wij�WiWj), where Wij, Wi and Wj represent the fitness
of the observed value in the experiment, the median fitness
of all strains in the experiment (estimated from the control
plate) and the median fitness of the array strain (estimated
as the median value of all its replicates), respectively. The
fitness values correspond roughly to the normalized
colony size that is rescaled to have an average value of
1, and the scores quantify the deviation from the expected
fitness. For reference, with our yeast SGA system, we find
that multiplicative scores below �0.3 indicate a strong

Figure 1. The SGAtools analysis pipeline. (a) Plate images are analyzed to produce raw colony size measurements, which are then normalized and
scored. The scores can further be visualized and selected genes tested for enrichment in GO terms. Heatmap and histogram images of the steps are
examples of the data analysis page output. (b) Three important biases in colony size measurements are corrected in SGAtools: (i) The plate effect
accounts for differences in average colony size between plates; (ii) the row/column effect corrects for the outside colonies having more access to
nutrients; and (iii) the spatial effect takes care of uneven thickness of medium in the plate.
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effect (e.g. synthetic lethal interaction) and should be
visible in plate images by eye. In low-throughput
screens, multiplicative scores between �0.1 and 0.1 are
unlikely to correspond to reproducible effects, and
positive scores between 0.1 and 0.3 should be treated
with caution owing to the competition effect described
earlier in the text. Similar to all genomic technologies,
SGA screens can also give rise to false negative and false
positive interactions. Their rates are affected by experi-
mental conditions and human error and can vary from
screen to screen, and, as a result, interactions identified
using SGAtools should be independently confirmed.
SGAtools performs the normalization and scoring on a

tab-delimited file containing the quantified colony sizes.
The files can be uploaded by the user or automatically
moved through from the image analysis step. Each tab-
delimited input file must have row, column and colony size
in the first three columns; the rest of the columns are
ignored. To link colonies to genes, the user can select
which array they were using or upload their own descrip-
tion. The files must be named according to the standard
described in the image analysis section to use this feature.
To score the data correctly, the technical replicate struc-
ture of the plate must be supplied. Currently, a single rep-
licate, and four replicates in a 2� 2 grid are supported.
Multiple biological replicates of the same strain can be
used as well by defining the same strain multiple times in
the plate layout file. The output of normalization and
scoring is a nine column tab-delimited file, which
includes the raw colony size, normalized colony size,
scores if computed and information about any filtering
results (Table 1). A single file combining all results
across plates, and averaging the colony sizes and scores
of technical replicates is also produced in addition to the
per-plate files.

DATA VISUALIZATION

It can be difficult to interpret results from large-scale
experiments based on columns of raw data in large flat
files. To help researchers get a broad overview of the

screening results, SGAtools includes three visualization
approaches to complement the quantitative analyses.
These features can be accessed after normalization and
scoring. First, the user can visualize the colony size or
fitness values as a heatmap (Figure 1a), and compare it
with the original image. This allows the user to verify
quantification results and confirm that the assigned
scores are consistent with intuition. Second, the distribu-
tion of the colony sizes or fitness can be visualized as a
histogram (Figure 1a). Ranges of the histogram can be
highlighted to select genes with the most extreme scores,
and the selected genes are displayed below the histogram
as a table. Finally, the selected genes can be tested for
enrichment in Gene Ontology terms using g:Profiler (18).

The data visualization aims to maximize interactivity
for the user. The raw images can be swapped with a
gridded version to see the results of image analysis or
hidden to optimize the viewing space for heatmaps.
Hovering over individual components of the heatmap
displays information about the colony (score or colony
size, experiment name, array gene name). The heatmap
coloring scheme can be modified to accentuate changes
in the low or high ranges of the values. The selection for
the histogram can also be adjusted using a draggable
sliding window.

VALIDATION

The image analysis and normalization methods re-imple-
mented in SGAtools for medium scale use have previously
been used in the context of high-throughput yeast double
deletion screens [e.g. (1)]. To confirm that our implemen-
tation performs correctly, we tested its performance on
simulated data, and a gold standard data set derived
from high-throughput screens.

First, we created 1000 simulated data sets from the
implicit generative model, using effect sizes and variance
parameters that are comparable with those of actual data.
The average Pearson correlation of simulated colony sizes
(not subject to systematic biases) and normalized colony
sizes was 0.66, whereas the correlation of simulated colony

Table 1. Example SGAtools output file

Row Col Colony size PlateID Query Array ncolony size Score Kvp

1 1 2943 user_dm_CAN1_12_SG-round-1.dat CAN1 BLANK NA NA (status=BG)
1 2 2899 user_dm_CAN1_12_SG-round-1.dat CAN1 BLANK NA NA (status=BG)
1 3 2585 user_dm_CAN1_12_SG-round-1.dat CAN1 BLANK 689.333 0.436 NA
1 4 2543 user_dm_CAN1_12_SG-round-1.dat CAN1 BLANK 742.568 0.540 NA
1 5 0 user_dm_CAN1_12_SG-round-1.dat CAN1 YAL012W 167.455 0.031 NA
1 6 0 user_dm_CAN1_12_SG-round-1.dat CAN1 YAL012W 163.544 0.023 NA
1 7 1452 user_dm_CAN1_12_SG-round-1.dat CAN1 YBL003C 515.654 0.177 NA
1 8 1034 user_dm_CAN1_12_SG-round-1.dat CAN1 YBL003C 358.912 �0.130 NA

There are nine columns in the SGAtools output. The first two columns determine the location of the colony on the plate (row and column). The third
column is the raw colony size produced by image analysis. The fourth column gives the plate ID of the colony, which is usually the image file name
and the .dat extension. Columns five and six give the query and array gene, if applicable, and are automatically filled with an index for array, and
filename for query, if the annotation is not provided. The seventh and eighth columns give the normalized colony size and calculated interaction
score. The colony size is NA if the colony fails any of the applied filters, and the reason for failure is given in the ninth column (see the table). For
control genes and plates, or when the user opts not to score the colony, the score is also NA. Finally, the ninth column contains any additional
information about the colony as a list of key-value pairs (kvp), separated by semicolons. For example, the first colony is filtered out, as it is
surprisingly big for the plate, this is designated as ‘status=BG’. The full list of statuses is given in the help files online.
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sizes and raw unnormalized colony sizes was 0.42. The
substantially stronger concordance shows that colony
sizes normalized by SGAtools better capture the true
underlying signal under the assumptions of this model
(Figure 2a and b). Second, we verified that the obtained
genetic interaction scores recapitulate data from Costanzo
et al. (1). We selected seven genome-wide screens and
scored the plates using SGAtools. The Pearson correlation
of interaction scores of all combined data was 0.72
(Figure 2c), with values for the seven screens individually
ranging from 0.48 to 0.90. Although the correlations are
not perfect, they are as strong as those observed between
biological replicates of the same screen [0.67–0.75, (13)],
confirming the correct performance of the statistical
model behind the SGAtools software.

DISCUSSION

SGAtools is a complete simple-to-use website for
analyzing small-scale array-based screens. It gives re-
searchers without access to designated computational
teams the ability to independently quantify and visualize
screening results, which greatly expediates analyses.
Although SGAtools was primarily developed for the
yeast community with the SGA analysis in mind, it can
also be useful for other types of colony size-based screens.
Chemical genomic screens in yeast are already supported,
and colony arrays for other microorganisms, such as
Schizosaccharomyces pombe (24) and Escherichia coli
(25) would be straightforward for the user to analyze.

SGAtools is aimed at quantifying relatively small-scale
screens. Thus, we cannot correct for effects that can only
be estimated when high-throughput data are available.
For example, we have previously corrected for differences
between the batch effects associated with large-scale SGA
screens (13), a type of correction that becomes important
when there is no precisely matched control. Also, while we
flag colonies potentially affected by the competition effect
(see earlier in the text), reliably correcting for it again
requires large amounts of data. Finally, interaction
scores are most robust when calculated using a large
number of control plates, which may not available for
smaller screens.

The analysis software is publicly available and can also
be extended for other methodology. For example, one
could opt to first score the strains, and then apply the
normalization steps as recently suggested (17). Our
groups are actively involved in several screening projects
that use SGAtools for analysis, and we expect to continue
implementing and updating any emerging best practices
for the community.

AVAILABILITY AND IMPLEMENTATION

The SGAtools website at http://sgatools.ccbr.utoronto.ca
is free and open to all users, and there is no login require-
ment. The web application uses the Java and Scala-based
Play Framework backend (http://www.playframework.
org), and the Twitter Bootstrap UI library (http://
twitter.github.com/bootstrap) for the frontend.
Visualizations are generated using the JavaScript libraries
Data Driven Documents [D3, (26)] and crossfilter (http://
square.github.com/crossfilter). Image analysis is imple-
mented using modified source code from HT colony grid
analyzer (20). Normalization and scoring use the R stat-
istical programming language (http://www.R-project.org).
All the source code is available on GitHub at https://
github.com/boonelab/sgatools.
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Figure 2. Validation of SGAtools performance. (a and b) Comparison of simulated colony sizes (x-axis) with ones subject to confounding experi-
mental effects (y-axis) before (a, r=0.42) and after (b, r=0.66) SGAtools normalization. (c) Comparison of SGAtools interaction score (x-axis)
with gold standard based on Costanzo et al. [(9), y-axis, r=0.70].
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